Hydrogenation effect on low temperature internal gettering in multicrystalline silicon

نویسندگان

  • Mohammad Al-Amin
  • John D. Murphy
چکیده

We have performed a comprehensive study into low temperature ( 500 °C) internal gettering in multicrystalline silicon (mc-Si). Two groups of as-grown mc-Si wafers from different ingot height positions were subjected to the same thermal treatments with surface passivation by either silicon nitride (SiNx:H) or a temporary iodine-ethanol (I-E) chemical solution . With either passivation scheme, lifetime in the relatively low lifetime samples from the bottom of the ingot improves substantially. There are however key passivation-dependent differences in behavior in other parts of the ingot. Lifetime in relatively good wafers from the middle of the ingot is improved significantly with silicon nitride passivation but not with iodineethanol, for which substantial reductions in lifetime initially occur. There are also key differences in the internal gettering behavior of bulk iron. We suggest the differences arise because silicon nitride introduces hydrogen into the bulk, whereas the iodine-ethanol does not. Index Terms — multicrystalline, silicon, hydrogenation, lifetime, passivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Recombination Activity of Grain Boundaries in Various Multicrystalline Silicon Materials

We compare the recombination properties of grain boundaries in conventionally-solidified p-type, ntype and ‘high performance’ p-type multicrystalline silicon wafers in terms of their surface recombination velocities, and evaluate their response to phosphorus gettering and hydrogenation. Overall, grain boundaries in the conventional p-type samples were found to be more recombination active than ...

متن کامل

Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the...

متن کامل

Direct comparison of the electrical properties of multicrystalline silicon materials for solar cells_ conventional p-type, n-type and high performance p-type

We compare the recombination properties of three important types of multicrystalline silicon wafers for solar cells, namely conventionally-solidified p-type and n-type multicrystalline wafers, and also the recently developed ‘high performance’ p-type multicrystalline wafers. Three distinct regions of the wafers are examined in detail. These are the intra-grain regions, the grain boundaries, and...

متن کامل

Precipitation of interstitial iron in multicrystalline silicon

The internal gettering of iron in silicon via iron precipitation at low processing temperatures is known to improve solar cell efficiencies. Studies have found that the optimal temperature lies in the range of 500 o C-600 o C. In this paper, we present experimental results on quantitatively analysing the precipitation of interstitial Fe in multicrystalline silicon wafers during the 500 o C-600 ...

متن کامل

Effects of solar cell processing steps on dislocation luminescence in multicrystalline silicon

We examine the impacts of hydrogenation and phosphorus gettering steps on the deep-level photoluminescence spectra of dislocations and the surrounding regions in multicrystalline silicon wafers, using micro-photoluminescence spectroscopy with micron-scale spatial resolution. We found that the D1 line, originating from secondary defects around dislocation sites, was enhanced significantly after ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016